Package: ConsensusOPLS 1.1.0

ConsensusOPLS: Consensus OPLS for Multi-Block Data Fusion

Merging data from multiple sources is a relevant approach for comprehensively evaluating complex systems. However, the inherent problems encountered when analyzing single tables are amplified with the generation of multi-block datasets, and finding the relationships between data layers of increasing complexity constitutes a challenging task. For that purpose, a generic methodology is proposed by combining the strength of established data analysis strategies, i.e. multi-block approaches and the Orthogonal Partial Least Squares (OPLS) framework to provide an efficient tool for the fusion of data obtained from multiple sources. The package enables quick and efficient implementation of the consensus OPLS model for any horizontal multi-block data structures (observation-based matching). Moreover, it offers an interesting range of metrics and graphics to help to determine the optimal number of components and check the validity of the model through permutation tests. Interpretation tools include score and loading plots, Variable Importance in Projection (VIP), functionality predict for SHAP computing, and performance coefficients such as R2, Q2, and DQ2 coefficients. J. Boccard and D.N. Rutledge (2013) <doi:10.1016/j.aca.2013.01.022>.

Authors:Celine Bougel [aut], Julien Boccard [aut], Florence Mehl [aut], Marie Tremblay-Franco [fnd], Mark Ibberson [fnd], Van Du T. Tran [aut, cre]

ConsensusOPLS_1.1.0.tar.gz
ConsensusOPLS_1.1.0.zip(r-4.5)ConsensusOPLS_1.1.0.zip(r-4.4)ConsensusOPLS_1.1.0.zip(r-4.3)
ConsensusOPLS_1.1.0.tgz(r-4.5-any)ConsensusOPLS_1.1.0.tgz(r-4.4-any)ConsensusOPLS_1.1.0.tgz(r-4.3-any)
ConsensusOPLS_1.1.0.tar.gz(r-4.5-noble)ConsensusOPLS_1.1.0.tar.gz(r-4.4-noble)
ConsensusOPLS_1.1.0.tgz(r-4.4-emscripten)ConsensusOPLS_1.1.0.tgz(r-4.3-emscripten)
ConsensusOPLS.pdf |ConsensusOPLS.html
ConsensusOPLS/json (API)
NEWS

# Install 'ConsensusOPLS' in R:
install.packages('ConsensusOPLS', repos = c('https://vanduttran.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.30 score 9 scripts 375 downloads 9 exports 11 dependencies

Last updated 1 months agofrom:f7946cc0ce. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 29 2025
R-4.5-winOKMar 29 2025
R-4.5-macOKMar 29 2025
R-4.5-linuxOKMar 29 2025
R-4.4-winOKMar 29 2025
R-4.4-macOKMar 29 2025
R-4.4-linuxOKMar 29 2025
R-4.3-winOKMar 29 2025
R-4.3-macOKMar 29 2025

Exports:ConsensusOPLSplotContributionplotDQ2plotLoadingsplotQ2plotR2plotScoresplotVIPpredict

Dependencies:cligluelifecyclemagrittrplyrRcppreshape2rlangstringistringrvctrs

Consensus OPLS for Multi-Block Data Fusion

Rendered fromConsensusOPLS.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2025-02-27
Started: 2024-06-21

Readme and manuals

Help Manual

Help pageTopics
Consensus OPLS for Multi-Block Data FusionConsensusOPLS-package
ConsensusOPLSConsensusOPLS
'ConsensusOPLS' S4 classConsensusOPLS-class
Three-block omics datademo_3_Omics
Block contribution plotplotContribution plotContribution,ConsensusOPLS-method
DQ2 plotplotDQ2 plotDQ2,ConsensusOPLS-method
Loading plotplotLoadings plotLoadings,ConsensusOPLS-method
Q2 plotplotQ2 plotQ2,ConsensusOPLS-method
R2 plotplotR2 plotR2,ConsensusOPLS-method
Score plotplotScores plotScores,ConsensusOPLS-method
VIP plotplotVIP plotVIP,ConsensusOPLS-method
Model predictionpredict predict,ConsensusOPLS-method